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For benzenoid hydrocarbons the distribution of pi-electrons amongst rings is charac-
terized in the context of Randić’s mode of assignment attending to the different Kekulé
structures. In particular, the mean and mean deviation from the mean are considered,
and the benzenoids which achieve maximum deviation are identified.
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1. Introduction

Benzenoid hydrocarbons are here considered to correspond to a planar net-
work of fused hexagons, such that there are no other rings of other sizes. See,
e.g., Cyvin and Gutman [1], who moreover, focus on Kekulé structures (or per-
fect matchings) of “benzenoids”. For any benzenoid system B, let us denote the
number of hexagons (of B) by h, the number of vertices (in B) by n, by e the
number of edges (of B) and by nin the the number of the inetranl vertices in B

(i.e. vertices that belong to three hexagons).
Let B have a Kekulé structure κ. In a recent paper, Randic [2] has

considered a manipulation and representation of Kekulé structures, especially of
benzenoids. He terms a conventional Kekulé structure “geometric”, and a novel
structure called an “algebraic Kekulé structured” is assigned to each geometric
Kekulé structure. An algebraic Kekulé structure is a function that assigns to
each hexagon of B one of the numbers 0, 1, . . . , 6 (a Randić electron count) in
special way: Each double bond that belongs to only one hexagon contributes two
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Figure 1.

electrons to that hexagon and each double bond that is on the border of two
hexagons contributes one electron to each hexagon. A self-explanatory example
is shown in (figure 1) above:

Such an assignment of electrons to rings has been argued [2] to be chem-
ically meaningful. Thence the characterization of such distributions should also
be of interest. We denote by |κ|ξ the Randic electron count for κ in ring ξ of B,
by M (κ) the mean value of the |κ|ξ averaged over rings ξ of B, by MD (κ) the
ring-averaged deviation of |κ|ξ for κ of B, and by SD (κ) the standard derivation
of |κ|ξ over rings of B. e.g., MD(κ) = h−1 ∑B

ξ

∣
∣|κ|ξ − M(κ)

∣
∣.

Here attention is directed to the expected values for M(κ), along with upper
bounds for associated deviations from the mean. The benzenoids with deviations
achieving our upper bounds are identified.

2. Mathematical results

We start with some useful auxiliary results:

Lemma 1. Let B be a benzenoid with h hexagons and nin internal vertices. Then

(1) n = 4h + 2 − nin

(2) e = 5h + 1 − nin

(3) B is Kekulean ⇒ nin is even and M(κ) = 4+(2−nin)/h is independent
of κ

Proof. (1) and (2) are given in [3,4] and also in [1]. Let us prove (3). Obvi-
ously, if B is Kekuléan, then n is even, hence, from (1), it follows that nin is even,
too. Note that the sum of Randic electron counts of all hexagons is equal to n.
Therefore, M (κ) = n/h = 4 + (2 − nin)/h.
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Hereafter M(κ) is abbreviated to just M.

Lemma 2. Let B be a Kekuléan benzenoid with h hexagons and nin internal ver-
tices. Then for each Kekulé structure there are at least 2 ·nin single-electron con-
tributions to some Randic electron-count for the different rings of B.

Proof. For each peri-vertex i there is one double bond ε in a Kekulé structure κ

incident at i, and as such a ε is shared between two rings, each of which makes a
single-electron contribution to their Randić numbers as shown in figure 2 below.
This proves the claim.

Lemma 3. Let B be a benzenoid with h hexagons, nin = 0, and Kekulé structure
κ. Then

MD(κ) � 8
3

− 4
3h

− 4
3h2

.

Proof. Recall that h · MD(κ) = ∑hex
ξ

∣
∣|κ|ξ − M

∣
∣ where the summation is over

rings of B, and M is fixed (from lemma 1) at 4 + (2 − 0)/h. The plus and minus
argument gives that maximum deviations

∣
∣|κ|ξ − M

∣
∣ occur when |κ|ξ takes val-

ues extreme values (i.e. 6 and 0), respectively. Now the maximum numbers of
these maximal ring deviations can be no greater than numbers h6 and h0 such
that h6 + h0 = h and M = (0 · h0 + 6 · h6)/h. Then

h6 = Mh

6
= (4 + 2

h
)
h

6
= 2h + 1

3
.

If this maximum were achieved for h6 while h0 = h − h6 = (h − 1)/3, then the
associated value that MD(6) would achieve is

MD0−bound = 1
h

{h0 · M + h6 · (6 − M)} = 8
3

− 4(h + 1)

3h2

and the lemma is proved.

Figure 2.
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A benzenoid with nin = 0 is called a cata-hex. A cata-condensed benzenoid
containing no subgraph isomorphic to anthracene is termed an all-kink cata-hex.
The inner dual G* for a planar embedding of a planar graph G such that no two
internal cycles share more than a single edge is the graph whose vertices corre-
spond to internal rings of the embedding and whose edges correspond to pairs
of these rings (of G) having a common edge (of G). Let us illustrate this with
the following example (see figure 3 as shown below).

Theorem 4. The upper bound of Lemma 3 for MD(6) is achieved for a Kekuléan
benzenoid B with nin = 0 if and only if: first, B is an all-kink cata-hex; and sec-
ond, all degree-1 and degree-2 vertices are starred in a bipartitioning of the inner
dual of B.

Proof. First for such a cata-hex it may be shown that the bound is achievable.
One assigns the rings ξ of B identified with the starred and unstarred vertices
of the inner dual B* respective values |κ|ξ = 6 and 0. This potential algebraic
Kekulé structure may be seen in fact to identify a geometric Kekulé structure:
a ring of B corresponding to an end vertex of B* is assigned double bonds as
in figure 4a, while a ring of B corresponding to a starred degree-2 or degree-3
vertex of B* is assigned double bonds as in figure 4b or 4c.

Figure 3.

Figure 4.
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Having done this one sees that all the sites in the remaining rings of B are
double bonded with double bonds in adjacent rings, as in figure 5.

Thus, the “if” part of the theorem is established. For the “only if” part
consider that in order to achieve the bound of Lemma 3, it was needed that
nin = 0 so that a Kekulé structure with only |κ|ξ = 6 and 0 could be achieved.
Then for such a cata-hex to achieve these extremal values for |κ|ξ it is clear that
the terminal rings necessarily having |κ|ξ > 0 needs to be chosen as in figure 3a,
whence the adjacent rings having |κ|ξ < 6 must be chosen with |κ|ξ = 0, so that
they must be as figure 5. In fact it is seen that alternant rings must have alter-
nate |κ|ξ values (0 and 6), and the overall structure demanded is that indicated
in the Theorem.

Theorem 5. Consider benzenoids in the class of Theorem 4. Then:

(1) such B are cata-hexes with h = 3m + 1, m � 0;

(2) every such B+ of 3m+4 hexagons, m � 1, can be constructed from one
(or more) similar B with 3m + 1 vertices by fusing a phenanthrene to a
degree-1 or -2 ring of B corresponding to a starred vertex of the inner
dual of B, as in figure 6; and

(3) every such B− of 3m+1 hexagons, m � 0, can be constructed from one
(or more) such benzenoids with 3m + 4 vertices by the reverse of this
fusing procedure.

Proof. First, from Theorem 4 it is clear (with nin = 0) that all B of the class
C of Theorem 4 must be cata-hexes. To see the second of the results of the cur-
rent theorem, suppose that B ∈ C, whence it is readily verified that the fusion of
figure 6 leads to yet another B+ ∈ C: the rings of B retain in B+ the same |κ|ξ
values as in B, the center ring of the fused phenanthrene has |κ|ξ = 0, and the
2 terminal rings of the phenanthrene have |κ|ξ = 6. Next for the third of these

Figure 5.
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Figure 6.

results one sees that there is a ring ξof B ∈ C adjacent to two terminal rings; evi-
dently |κ|ξ = 0 so that the third neighbor of ξ has corresponding electron counts
of 6. Now B− is obtained by deletion of the ring ξ together with its two terminal
neighbors. Then one sees that all finite B ∈ C with h � 4 rings can be through
repeated such defusions reduced to one of h � 3, whereupon examination of the
consequent 4 Kekuléan benzenoids (benzene, naphthalene, anthracene, and phen-
anthrene) reveals that only benzene entertains a “maximal” Kekulé structure as
considered here. Thence finally the first result is established.

Consideration of the proofs of the preceding two theorems reveals:

Corollary 6. Of benzenoids in the class of Theorem 4, all have a unique MD(κ)-
maximizing Kekulé structure κ except for benzene (which has 2).

Theorem 7. Amongst Kekuléan benzenoids with arbitrary nin and a number
h = 3m + 1 of hexagons, the maximum MD(κ) is that of Lemma 3 for suitable
benzenoids as in Theorem 4.

Proof. To find an upper bound for MD(κ) at a given h and nin, start out
noting that the number of 1-electron contributions (to the counts |κ|ξ ) is by
lemma 2 equal to 2 nin, so that the number of 2-electron contributions must be
� (n − nin)/2. Also 2 < M < 4 (for nin > 0), so that the maximum conceiv-
able deviation

∣
∣|κ|ξ − M

∣
∣ for a ring ρ with a 2-electron contribution is >2 (at

|κ|ξ = 6). Thus an upper bound to MD(κ) is obtained if we imagine a prospec-
tive maximum number (n − nin)/6 ≡ h6 of rings ρ to make this maximum devi-
ation 6 − M. That is,

MDbound = 1
h

{

(6 − M)
N − nin

6
+

[
results from

1-electron contributions

]

+ Mh0

}

,

where we shall use hi to denote the prospective number of rings with |κ|ξ = i.
Of the imagined rings > with |κ|ξ � 5, there are just h − h6 = h − (n − nin)/6
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remaining rings on which to distribute the 2nin different 1-electron contributions.
Further, since 1-electron contributions cannot occur at adjacent bonds all of
these remaining rings (with |κ|ξ � 5 and without 2-electron contributions) must
have |κ|ξ � 3, and we obtain an upper bound on MD(κ) as

MDbound = 1
h

{

(6 − M)
N − nin

6
+ |M − 3| h3 + (M − 2)h2 + (M − 1)h1 + Mh0

}

= 1
h

{

(6 − M)
N − nin

6
+ (|M − 3| − M)h3 − 2h2 − h1 + M(h − h6)

}

with 3 < M < 4, we have −3 < (|M − 3| − M) < −1, and one sees that in
our expression for MDbound the middle terms involving h3, h2, and h1 make neg-
ative contributions of no more than –1 per 1-electron contribution. That is, if
this upper bound is imagined to be as low as possible, then these terms involving
h3, h2, and h1 may be taken into account by a single term of −1× (2nin), thusly

MDbound = 1
h

{

(6 − M)
N − nin

6
− 2nin + M(h − h6)

}

.

Substitution of h6 = (n − nin)/6, n = 4h + 2 − nin, and M(κ) = 4 + (2 − nin)/h,
then leads to

MDbound = 1
h

{
8
3
h − 4

3
− 4

3h
− nin + 2

nin

h
− 2n2

in

3h

}

= MD0−bound − nin

h

{

1 − 2
h

+ 2nin

h

}

,

where MD0−bound is the (nin = 0) bound of Lemma 3. Since nin � 2 and h � 4,
we have MDbound < MD0−bound, whence the theorem is established.

Corollary 8. The value 8/3 for MD(κ) is approached (from below) arbitrarily
closely for finite benzenoids B, and is achieved only for infinite B, such B sat-
isfying the conditions of Theorems 4 and 5.

Parallel results follow for SD(κ):
Lemma 3′. For a benzenoid B with h hexagons, nin = 0, and a Kekulé structure κ,

SD(κ) �
√

8 − 4
h

− 4
h2

.

Theorem 4′–8′. For Kekuléan benzenoids the SD(κ) upper bound of lemma 3′

is achieved in exactly the same circumstances as described in Theorems 4 and 5,
Corollary 6, Theorem 7, and Corollary 8 for achievement of the MD(κ) upper
bounds.
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3. Discussion and conclusion

A possible point of interest is that the class of benzenoids with an inner
dual which is a tree with all vertices of degree-1 or -3 (somewhat as in Theorem
4) is [5] also that with a maximum number of Kekulé structures per hexagon.
Given a maximum number of Kekulé structures it is perhaps not so surprising
that one also finds maximal deviations.

The maximizing Kekulé structures of Theorems 4 and 5 look like what
might be called “anti-Fries” structures, “Fries structures” being Kekulé struc-
tures which have a sort of maximum of sharing of double bonds between rings.
In more detail (in honor of Fries early work [6,7]), a Fries structure of a graph
G is a Kekulé structure κ such that there is a maximal number of rings of G
which are conjugated 6-circuits in κ. The most favorable Fries structures κ occur
for benzenoids where every hexagonal ring is a conjugated 6-circuit of. Notably
such favorable Fries structures occur [8] precisely for those benzenoids which are
all-kink cata-hexes. Moreover, there is a unique fullerene which has such a favor-
able Fries structure – namely, buckminsterfullerene.

In conclusion, Randić’s “algebraic” Kekulé structure representation has
been further characterized. The distribution of electrons amongst rings is char-
acterized as to the maximum possible deviation MD(κ) from the mean, and the
apparently interesting class of benzenoids achieving this maximum have been
identified.
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